Assalamu'alaikum teman teman semua,,,,
apa kabarnya ??? semoga Allah melindungi kita semua ....
untuk kali ini, penulis akan menyajikan soal dan pembahasan tentang pertidaksamaan linier.
Mudah mudahan bisa membantu mu menjawab semua soal sehingga terlatih untuk menyelesaikan soal soal, termasuk soal ujian masuk perguruan tinggi negeri terbaik di Indonesia. Sambil jangan lupa berdoa ya karena itu yg utama :)
Baca juga Daftar PTN terbaik di Indonesia
mari disimak penjelasannya..
1. Defenisi Pertidaksamaan linear

Bentuk umum pertidaksamaan linear dua variabel sama dengan bentuk umum persamaan linear dua variabel. Seperti yang sudah disinggung sebelumnya, perbedaannya terletak pada tanda ketidaksamaan. Pada persamaan digunakan tanda “ = ”, sedangkan pada pertidaksamaan digunakan tanda “ >, <, ≥, atau ≤ “.
Baca juga Kampus swasta terbaik di Indonesia
Berikut bentuk umum dari pertidaksamaan linear dua variabel.
ax + by > c
ax + by < c
ax + by ≥ c
ax + by ≤ c
Dengan :
a = koefisien dari x, a ≠ 0
b = koefisien dari y, b ≠ 0
c = konstanta
a, b, dan c anggota bilangan real.
Penyelesaian dari suatu pertidaksamaan linear dua variabel berupa pasangan terurut (a, b) yang memenuhi pertidaksamaan linear dua variabel. Semua penyelesaian dari pertidaksamaan linear dua variabel disatukan dalam suatu himpunan penyelesaian. Himpunan penyelesaian dari suatu
pertidaksamaan linear dua variabel biasanya disajikan dalam bentuk grafik pada bidang koordinat cartesius. Langkah-langkah yang harus diambil untuk menggambar kan grafik penyelesaian dari per tidaksama an linear dua variabel, hampir sama dengan langkah-langkah dalam menggambarkan grafik persamaan linear dua variabel.
Berikut ini langkah-langkah mencari daerah penyelesaian dari
pertidaksamaan linear dua variabel.
a. Ganti tanda ketidaksamaan >, <, , atau dengan tanda “ = “.
b. Tentukan titik potong koordinat cartesius dari persamaan linear dua variabel dengan kedua sumbu.
• Titik potong dengan sumbu x, jika y = 0 diapit titik (x,0)
• Titik potong dengan sumbu y, jika x = 0 diapit titik (0,y)
c. Gambarkan grafiknya berupa garis yang menghubungkan titik (x,0) dengan titik (0,y). Jika pertidaksamaan memuat > atau <, gambar kanlah grafik tersebut dengan garis putus-putus.
d. Gunakanlah sebuah titik uji untuk menguji daerah penyelesaian pertidaksamaan.
e. Berikanlah arsiran pada daerah yang memenuhi himpunan penyelesaian pertidaksamaan.
agar lebih jelas, mari disimak contoh soal dan pembahasannya...
Baca juga 10 Jurusan terbaik untuk anak IPA
contoh 1

penyelesaian,,

contoh 2,

Baca juga Pekerjaan paling diminati di Indonesia
jawabannya,,,


2. Sistem Pertidaksamaan Linear Dua VariabelJika Anda memiliki dua atau lebih pertidaksamaan linear dua variabel, dan pertidaksamaan tersebut saling berkaitan maka terbentukl ah suatu sistem. Sistem inilah yang dinamakan sistem pertidaksamaan linear dua variabel.
Baca juga Tips dan trik agar lulus ujian CPNS
Definisi Sistem Pertidaksamaan Linear Dua Variabel
Sistem pertidaksamaan linear dua variabel adalah suatu sistem yang terdiri
atas dua atau lebih pertidaksamaan dan setiap pertidaksamaan tersebut
mem punyai dua variabel.
Langkah-langkah menentukan daerah) penyelesaian dari sistem pertidaksamaan linear dua variabel sebagai berikut.
a. Gambarkan setiap garis dari setiap pertidaksamaan linear dua variabel yang diberikan dalam sistem pertidaksamaan linear dua variabel.
b. Gunakanlah satu titik uji untuk menentukan daerah yang memenuhi setiap pertidaksamaan linear dua variabel. Gunakan arsiran yang berbeda untuk setiap daerah yang memenuhi pertidaksamaan yang berbeda.
c. Tentukan daerah yang memenuhi sistem pertidaksamaan linear, yaitu daerah yang merupakan irisan dari daerah yang memenuhi pertidaksamaan linear dua variabel pada langkah b.
contoh 3

Baca juga Terbukti olahraga ini efektif menurunkan berat badan
penyelesaian,


Baca juga Tips mengurangi berat badan secara alami
contoh 4,,

contoh 5,,

Baca juga Cara memutihkan gigi secara alami
penyelesaiannya,,,

Baca juga Makanan ini ampuh menurunkan berat badan
gimana kawan??
cukup membantu tidak???
baca juga artikel lainnya...
- contoh soal dan pembahasan barisan geometri
- soal dan pembahasan barisan aritmatika
-mencari mean, median, modus dan kuartil
Ikuti materi ini lagi dan download soalnya ?? klik disini
Baca juga Cara meninggikan tinggi badan yang cukup ampuh
thx.. bantu banget :)
BalasHapusapaan si lu
HapusTidak jelas
BalasHapusTerima kasih...
BalasHapusMembantu sekali😊😊
Terima kasih...
BalasHapusMembantu sekali😊😊
Kok cara pengerjaan nya sangat beda ya sama yg diajarkan guruku
BalasHapusKarena gurumu bukan guruku hehe ;p
HapusTerima kasih banyak
BalasHapusBoleh juga
BalasHapusKtl
BalasHapusKomentar ini telah dihapus oleh pengarang.
Hapusthx
BalasHapusthx
BalasHapusKepala lu thx
HapusKepala lu thx
HapusTerima kasih
BalasHapusTerima Kasih
BalasHapusterima kasih
BalasHapussangat membantu 😊
Terima kasih, sangat membantu. Langsung paham :)
BalasHapusKok kurang bisa di pahami y.lagian cara nya beda jauh sama guru gua
BalasHapusKok kurang bisa di pahami y.lagian cara nya beda jauh sama guru gua
BalasHapusKurang paham nih gan
BalasHapus